

Round Table

What next?: Theoretical and Experimental Physics after the discovery of the Brout-Englert-Higgs boson

conformal transformations and new properties of relativistic wave equations for massive and massless particles

Alexander J. Silenko+¤

+ Research Institute for Nuclear Problems, BSU, Minsk, Belarus

BLTP, Joint Institute for Nuclear Research, Dubna, Russia

3 – 5 March 2014 Dubna, Russia

OUTLINE

- Covariant Klein-Fock-Gordon equation and conformal invariance for massless particles. Fifty-year history
- Conformal invariance and new (Hermitian) form of the Klein-Fock-Gordon equation. Conformal symmetry for a pointlike scalar particle (Higgs boson)
- Conformal symmetries of Hamiltonians
- Exact Foldy-Wouthyusen transformation
- Inclusion of electromagnetic interactions
- Comparison of scalar and Dirac particles
- Summary

Covariant Klein-Gordon-Fock equation and conformal invariance for massless particles. *Fifty-year history*

Conformal invariance for a massless particle

R. Penrose

N.A. Chernikov (1928 – 2007)

E. Tagirov

R. Penrose, In: Relativity, Groups and Topology. London: Gordon and Breach, 1964, p. 565.

N. Chernikov and E. Tagirov, Ann. Inst. Henri Poincarè 9, 109 (1968).

v

Covariant Klein-Gordon-Fock equation with the nonminimal coupling:

$$\left(\frac{1}{\sqrt{-g}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}+m^{2}-\lambda R\right)\psi=0, \quad \lambda=\frac{1}{6}.$$

Non-minimal coupling with the scalar curvature

$$R = g^{\mu\nu}R_{\mu\nu} = g^{\mu\nu}R^{\lambda}_{\mu\lambda\nu}$$

The sign of the Penrose-Chernikov-Tagirov term depends on the definition of R

In: Relativity, Groups and Topology.

London: Gordon and Breach, 1964

Republication of: Conformal treatment of infinity

Roger Penrose

The utility of this idea rests on the fact that the zero rest-mass free-field equations for each spin value are conformally invariant if interpreted suitably. For example, for spin zero, if the wave equation is written as

$$\left\{\nabla_{\mu} \nabla^{\mu} + \frac{R}{6}\right\} \phi = 0$$

where R is the scalar curvature and $\nabla \mu$ denotes covariant derivative—both according to the metric $g_{\mu\nu}$ of \mathcal{M} , then

$$\left\{\tilde{\nabla}_{\mu}\tilde{\nabla}^{\mu} + \frac{\tilde{R}}{6}\right\}\tilde{\phi} = 0$$

where $\tilde{\nabla}_{\mu}$, \tilde{R} refer to the metric $\tilde{g}_{\mu\nu} = \Omega^{-2}g_{\mu\nu}$ of $\tilde{\mathcal{M}}$ and where

$$\tilde{\phi} = \Omega \phi$$
.

N. Chernikov and E. Tagirov, Ann. Inst. Henri Poincarè 9, 109 (1968)

n is a number of dimensions

But the only discovered pointlike scalar particle (Higgs boson) is massive!

New step ahead (Hamiltonian approach):

A. Accioly and H. Blas, Exact Foldy-Wouthuysen transformation for real spin-0 particle in curved space, PHYSICAL REVIEW D 66, 067501 (2002).

Static metric in isotropic coordinates:

$$ds^{2} = V(\mathbf{x})^{2} \left(dx^{0} \right)^{2} - W(\mathbf{x})^{2} \left(d\mathbf{x} \right)^{2}.$$

Feshbach-Villars transformation (useless for massless particles):

$$\psi = \phi + \chi, \quad \frac{i}{m} \frac{\partial \psi}{\partial t} = \phi - \chi.$$

the mass in the deniminator!

$$\mathcal{H}_{FW} = \rho_{3} \sqrt{m^{2}V^{2} + F\mathbf{p}^{2}F - \frac{1}{4}\nabla F \cdot \nabla F + \frac{V^{2}}{2W^{3}}\Delta W + \frac{V}{2W^{2}}\Delta V - \frac{1}{6}V^{2}R},$$

$$-\frac{1}{6}V^{2}R = \frac{1}{6}F\Delta F - \frac{V^{2}}{2W^{3}}\Delta W - \frac{V}{2W^{2}}\Delta V,$$

$$\mathcal{H}_{FW} = \rho_{3} \sqrt{m^{2}V^{2} + F\mathbf{p}^{2}F - \frac{1}{4}\nabla F \cdot \nabla F + \frac{1}{6}F\Delta F}, \quad F = \frac{V}{W}.$$
If $m = 0$, $\mathcal{H}_{FW} \left(g' \right)^{\mu\nu} = \frac{g^{\mu\nu}}{\Omega(\mathbf{x})^{2}} \right) = \mathcal{H}_{FW} \left(g^{\mu\nu} \right).$

$$ds^{2} = V^{2} \left(dx^{0} \right)^{2} - W^{2} \left(d\mathbf{x} \right)^{2}.$$

Wouthuysen Hamiltonian which are proportional to the particle mass

But it is only a shadow of the conformal invariance, because $m\neq 0$!

Hamiltonian approach in classical general relativity:

$$\mathcal{H}_{class} = \sqrt{\frac{m^2 - G^{ij} p_i p_j}{g^{00}}} + \frac{g^{0i} p_i}{g^{00}}, \quad G^{ij} = g^{ij} - \frac{g^{0i} g^{0j}}{g^{00}}.$$

G. Cognola, L. Vanzo, and S. Zerbini, Gen. Relativ. Gravit. 18, 971 (1986).

If
$$m = 0$$
, $\mathcal{H}_{class}\left(\left(g'\right)^{\mu\nu} = \frac{g^{\mu\nu}}{\Omega(\mathbf{x})^2}\right) = \mathcal{H}_{class}\left(g^{\mu\nu}\right)$.

The second-order form of this classical Hamiltonian equation is

$$g^{\mu\nu}p_{\mu}p_{\nu}-m^{2}+\lambda R=0, \qquad \lambda=0!$$

The classical equations contrary to quantum mechanical ones correspond to the minimal coupling

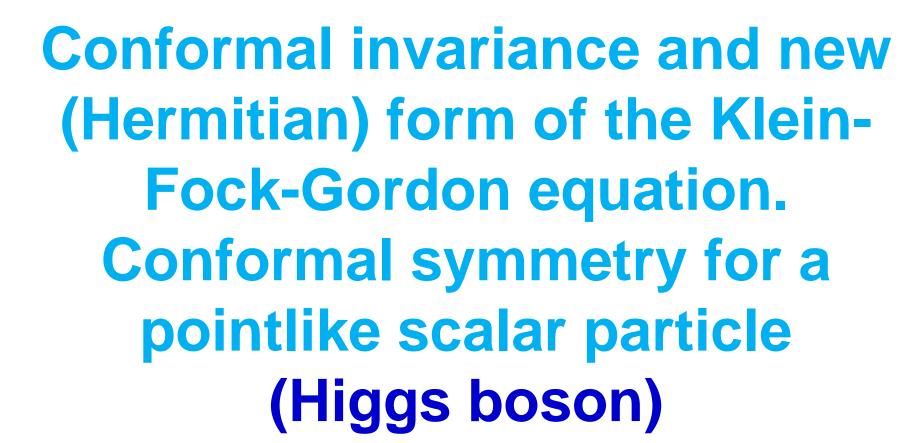
Scalar particle in general inertial and gravitational fields and conformal invariance revisited

Alexander J. Silenko

ch Institute for Nuclear Problems, Belarusian State University, Minsk 220030, B Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Received 29 May 2013; published 5 August 2013)

- 1. Exact Foldy-Wouthuysen transformation for
 - i) general static metric
 - ii) frame rotating in the Kerr field approximated by a spatially isotropic metric
- 2. Proof of conformal invariance of the Foldy-Wouthuysen Hamiltonian for massless particles and conformal symmetry for massive ones
- 3. Proof of similarity of conformal transformations for scalar and Dirac particles

11



$$\left(\frac{1}{\sqrt{-g}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}+m^{2}-\lambda R\right)\psi=0.$$

$$\psi'=\Omega^{\frac{n-2}{2}}\psi, \qquad g'_{\mu\nu}=\Omega^{2}g_{\mu\nu}.$$

The nonunitary transformation

$$\Phi = \sqrt{g^{00}}\sqrt{-g}\psi$$
, $g = \det g_{\mu\nu}$, $g' = \Omega^{2n}g$.

Φ is *invariant* relative to conformal transformations

We multiply the KFG equation from left by

Hermitian form of the KFG equation:

$$\left(\frac{1}{\sqrt{g^{00}\sqrt{-g}}}\,\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}\,\frac{1}{\sqrt{g^{00}\sqrt{-g}}}\,-\,\frac{\lambda R}{g^{00}}\,+\,\frac{m^{2}}{g^{00}}\right)\Phi \,\,=\,\,0\,.$$

r.

For a massless particle

$$\left(\frac{1}{\sqrt{g^{00}\sqrt{-g}}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}\frac{1}{\sqrt{g^{00}\sqrt{-g}}}-\frac{\lambda R}{g^{00}}\right)^{\prime}$$

$$=\left(\frac{1}{\sqrt{g^{00}\sqrt{-g}}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}\frac{1}{\sqrt{g^{00}\sqrt{-g}}}-\frac{\lambda R}{g^{00}}\right)^{\prime}$$

This part of the KFG equation can be transformed:

Denotations:

$$f = \sqrt{g^{00}\sqrt{-g}}, \qquad \Gamma^i = \sqrt{-g}g^{0i},$$

$$G^{ij} = g^{ij} - \frac{g^{0i}g^{0j}}{g^{00}}, \qquad \Upsilon = \frac{1}{2f} \left\{ \partial_i, \Gamma^i \right\} \frac{1}{f} = \frac{1}{2} \left\{ \partial_i, \frac{g^{0i}}{g^{00}} \right\},$$

$$\Lambda = -\frac{f_{,0,0}}{f} - \left(\frac{g^{0i}}{g^{00}}\right)_{,i} \frac{f_{,0}}{f} - 2\frac{g^{0i}}{g^{00}} \frac{f_{,0,i}}{f} - \left(\frac{g^{0i}}{g^{00}}\right)_{,0} \frac{f_{,i}}{f}$$

$$-\frac{1}{2}\left(\frac{g^{0i}}{g^{00}}\right)_{0,i} - \frac{1}{2f^2}\left(\frac{g^{0i}}{g^{00}}\right)_{i} \Gamma^{j}_{,j} - \frac{g^{0i}}{2f^2g^{00}} \Gamma^{j}_{,i,j}$$

$$+\frac{1}{4f^4}\left(\Gamma_{,i}^i\right)^2-\left(\frac{G^{ij}}{g^{00}}\right)_i\frac{f_{,j}}{f}-\frac{G^{ij}}{g^{00}}\frac{f_{,i,j}}{f}-\frac{\lambda R}{g^{00}}$$

Equivalent Hermitian form of the KFG equation:

$$\left[\left(\partial_0 + \Upsilon \right)^2 + \partial_i \frac{G^{ij}}{g^{00}} \, \partial_j + \Lambda + \frac{m^2}{g^{00}} \right] \Phi = 0.$$

 Y, G^{ij} / g^{00} , and Λ are invariant relative to conformal transformations

We can extend conformal symmetry on massive particles. The conformal-like transformation

$$g'_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad m' = \Omega^{-1} m$$

conserves the operator [...] acting on Φ and, therefore, conserves Φ when $\lambda=1/6$ (generally, (n-2)/[4(n-1)]). As a result, the operator acting on Φ in the equation

$$\left(\frac{1}{\sqrt{g^{00}\sqrt{-g}}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}\frac{1}{\sqrt{g^{00}\sqrt{-g}}}-\frac{\lambda R}{g^{00}}+\frac{m^{2}}{g^{00}}\right)\Phi = 0$$

remains unchanged. The initial covariant Klein-Fock-Gordon equation

$$\left(\frac{1}{\sqrt{-g}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}+m^{2}-\frac{n-2}{4(n-1)}R\right)\psi=0$$

has following properties:

$$\psi' = \Omega^{\frac{n-2}{2}} \psi$$
 when $g'_{\mu\nu} = \Omega^2 g_{\mu\nu}$, $m' = \Omega^{-1} m$.

The conformal symmetry has extended on a pointlike scalar particle (Higgs boson)!

Conformal symmetries of Hamiltonians

Feshbach-Villars transformation to a Hamiltonian form for a massive particle

$$\left[\left(\partial_0 + \Upsilon \right)^2 + T \right] \Phi = 0, \quad T = \partial_i \frac{G^{ij}}{g^{00}} \partial_j + \Lambda + \frac{m^2}{g^{00}}$$

$$\Phi = \phi + \chi, \quad i \left(\partial_0 + \Upsilon \right) \Phi = m(\phi - \chi).$$

m appears in a denominator!

Generalized Feshbach-Villars transformation for both massive and massless particles

The wave function in the Feshbach-Villars representation is given by

$$\Psi = \frac{1}{2} \begin{pmatrix} \Phi + \frac{i}{m} (\partial_0 + \Upsilon) \Phi \\ \Phi - \frac{i}{m} (\partial_0 + \Upsilon) \Phi \end{pmatrix}$$

 $\Psi = \frac{1}{2} \begin{pmatrix} \Phi + \frac{i}{m} (\partial_0 + \Upsilon) \Phi \\ \Phi - \frac{i}{m} (\partial_0 + \Upsilon) \Phi \end{pmatrix}$ It was proved that a similar transformation can be performed with the use of any nonzero parameter instead of the particle mass, m

A. Mostafazadeh, J. Phys. A, **31**, 7829–7845 (1998); Ann. Phys., **309**, 1–48 (2004).

Successive generalized Feshbach-Villars and Foldy-Wouthyusen transformations

The method has been developed in

A.J. Silenko, Hamilton operator and the semiclassical limit for scalar particles in an electromagnetic field, Theor. Math. Phys. **156**, 1308 (2008).

$$\psi = \phi + \chi, \quad \frac{i}{N} (\partial_0 + \Upsilon) \psi = \phi - \chi.$$

N is an arbitrary nonzero real parameter

$$i(\partial_0 + \Upsilon)\Psi = \begin{bmatrix} N \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} + \frac{T}{2N} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \end{bmatrix} \Psi, \quad \Psi = \begin{pmatrix} \phi \\ \chi \end{pmatrix}.$$

The Pauli matrices can be used

$$i(\partial_0 + \Upsilon)\Psi = \frac{1}{2N} \left[\rho_3 \left(N^2 + T \right) + i \rho_2 \left(-N^2 + T \right) \right] \Psi.$$

r.

Therefore, we obtain the following generalized Feshbach-Villars Hamiltonian:

$$\mathcal{H}_{gFV} = \rho_3 \frac{N^2 + T}{2N} + i\rho_2 \frac{-N^2 + T}{2N} - i\Upsilon.$$

This Hamiltonian is not changed by the conformal-like transformation

$$g'_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad m' = \Omega^{-1} m.$$

General method of the Foldy-Wouthyusen transformation

$$\mathcal{H}_{gFV} = \rho_{3}\mathcal{M} + \mathcal{E} + \mathcal{O}, \quad \rho_{3}\mathcal{M} = \mathcal{M}\rho_{3}, \quad \rho_{3}\mathcal{E} = \mathcal{E}\rho_{3}, \quad \rho_{3}\mathcal{O} = -\mathcal{O}\rho_{3},$$

$$\mathcal{M} = \frac{N^{2} + T}{2N}, \quad \mathcal{E} = -i\Upsilon, \quad \mathcal{O} = i\rho_{2} \frac{-N^{2} + T}{2N},$$

$$U = \frac{\varepsilon + \mathcal{M} + \rho_{3}\mathcal{O}}{\sqrt{2\varepsilon(\varepsilon + \mathcal{M})}}, \quad \varepsilon = \sqrt{\mathcal{M}^{2} + \mathcal{O}^{2}}, \quad \mathcal{F} = \mathcal{E} - i\frac{\partial}{\partial t}.$$

In the case under consideration,

$$U = \frac{\varepsilon + N + \rho_1(\varepsilon - N)}{2\sqrt{\varepsilon N}}, \quad \varepsilon = \sqrt{T}, \quad \mathcal{H}' = \rho_3 \varepsilon + \mathcal{E}' + \mathcal{O}',$$

$$\mathcal{E}' = \mathcal{E} + \frac{1}{2\sqrt{\varepsilon}} \left[\sqrt{\varepsilon}, \left[\sqrt{\varepsilon}, \mathcal{F} \right] \right] \frac{1}{\sqrt{\varepsilon}}, \quad \mathcal{O}' = \rho_1 \frac{1}{2\sqrt{\varepsilon}} \left[\varepsilon, \mathcal{F} \right] \frac{1}{\sqrt{\varepsilon}}.$$

The transformed (intermediate) Hamiltonian describing the both massive and massless particles does not contain *N* and *is not changed* by the conformal–like transformation!

Final approximate Foldy-Wouthuysen Hamiltonian

$$\mathcal{H}_{FW} = \rho_3 \varepsilon + \mathcal{E}', \quad \varepsilon = \sqrt{T}.$$

The conformal-like transformation does not change the Foldy-Wouthuysen Hamiltonian!

Conformal symmetries of the generalized Feshbach-Villars and Foldy-Wouthuysen Hamiltonians have been proved

in the general form!

Exact Foldy-Wouthyusen transformation

Sufficient condition of exact Foldy-Wouthuysen transformation

$$[\mathcal{M}, \mathcal{O}] = [\mathcal{F}, \mathcal{O}] = 0 \implies \mathcal{H}_{FW} = \rho_3 \sqrt{T} - i\Upsilon.$$

1. Foldy-Wouthuysen transformation is exact for any static metric

In many important cases, the spacetime metric can be represented in a static form with an appropriate coordinate transformation. For example, it can be made for de Sitter and anti-de Sitter spaces)

Static metric in isotropic coordinates

Exact Foldy-Wouthuysen transformation has been performed by Accioly and H. Blas (2002) for massive particles

$$ds^{2} = V(\mathbf{x})^{2} \left(dx^{0} \right)^{2} - W(\mathbf{x})^{2} \left(d\mathbf{x} \right)^{2}.$$

The obtained result formally coincides with that by Accioly and Blas

$$\begin{split} \mathcal{H}_{FW} &= \rho_{3} \sqrt{m^{2} V^{2} + F \mathbf{p}^{2} F - \frac{1}{4} \nabla F \cdot \nabla F + \frac{V^{2}}{2W^{3}} \Delta W + \frac{V}{2W^{2}} \Delta V - \frac{1}{6} V^{2} R}, \\ &- \frac{1}{6} V^{2} R = \frac{1}{6} F \Delta F - \frac{V^{2}}{2W^{3}} \Delta W - \frac{V}{2W^{2}} \Delta V, \\ \mathcal{H}_{FW} &= \rho_{3} \sqrt{m^{2} V^{2} + F \mathbf{p}^{2} F - \frac{1}{4} \nabla F \cdot \nabla F + \frac{1}{6} F \Delta F}, \quad F = \frac{V}{W}. \end{split}$$

But we already have a right to consider the case of *m*=0 showing the conformal invariance!

If
$$m=0$$
, $\mathcal{H}_{FW}\left(\left(g'\right)^{\mu\nu}=\frac{g^{\mu\nu}}{\Omega(\mathbf{x})^2}\right)=\mathcal{H}_{FW}\left(g^{\mu\nu}\right)$.

2. Frame rotating in the Kerr field approximated by a spatially isotropic metric

All effects of the Schwarzschild gravitational field and the frame rotation are *exactly* described in *isotropic* Arnowitt-Deser-Misner coordinates

Effects of rotation of the *Kerr* source are described in these coordinates within terms of order of $O(a^2r^{-4})$

total mass M, total angular momentum J=Mca

This case covers an observer on the ground of the Earth or on a satellite. It reproduces not only the well-known effects of the rotating frame but also the Lense-Thirring effect.

Frame rotating in the Kerr field: An approximation by a spatially isotropic metric

$$d\mathbf{x}' = d\mathbf{x} - \left[\mathbf{\Omega}(r) \times \mathbf{x}\right] dx^{0}, \quad \mathbf{\Omega}(r) = \mathbf{\omega}(r) - \mathbf{o}, \quad \mathbf{o} = const,$$

$$ds^{2} = V^{2}(r) \left(dx^{0}\right)^{2} - W^{2}(r) \left(d\mathbf{x} - \mathbf{K}dx^{0}\right) \left(d\mathbf{x} - \mathbf{K}dx^{0}\right),$$

$$\mathbf{K} = \mathbf{\Omega} \times \mathbf{x},$$

$$g^{00} = \frac{1}{V^{2}(r)}, \quad g^{0i} = \frac{K^{i}}{V^{2}(r)}, \quad G^{ij} = -\frac{\delta^{ij}}{W^{2}(r)}.$$

In isotropic spherical coordinates ($\Omega = \Omega e_{\gamma}$),

$$ds^{2} = \left[V^{2}(r) - W^{2}(r)\Omega^{2}(r)r^{2}\sin^{2}\theta\right] \left(dx^{0}\right)^{2}$$
$$-W^{2}(r)\left[dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2} + 2\Omega(r)\sin^{2}\theta dx^{0}d\phi\right)\right].$$

Exact Foldy-Wouthyusen Hamiltonian

$$T = m^{2}V^{2} + F\mathbf{p}^{2}F - \frac{1}{4}\nabla F \cdot \nabla F + \frac{V}{2W^{2}} \left[F\left(\frac{2W'_{r}}{r} + W''_{rr}\right) + \frac{2V'_{r}}{r} + V''_{rr} \right] - \frac{1}{6}V^{2}R,$$

$$-\frac{1}{6}V^{2}R = \frac{1}{6}F\Delta F - \frac{V}{2W^{2}} \left[F\left(\frac{2W'_{r}}{r} + W''_{rr}\right) + \frac{2V'_{r}}{r} + V''_{rr} \right] + \frac{1}{12}\Omega^{'2}r^{2}\sin^{2}\theta,$$

$$\mathcal{H}_{FW} = \rho_{2A} \sqrt{m^{2}V^{2} + F\mathbf{p}^{2}F - \frac{1}{2}\nabla F \cdot \nabla F + \frac{1}{2}F\Delta F + \frac{1}{2}\Omega^{'2}r^{2}\sin^{2}\theta + \mathbf{\Omega} \cdot \mathbf{I},$$

$$\mathcal{H}_{FW} = \rho_3 \sqrt{m^2 V^2 + F \mathbf{p}^2 F - \frac{1}{4} \nabla F \cdot \nabla F + \frac{1}{6} F \Delta F + \frac{1}{12} \Omega_r^2 r^2 \sin^2 \theta + \mathbf{\Omega} \cdot \mathbf{l}},$$

$$\Omega = -\mathbf{0}$$
 for rotating frame, $\Omega = \frac{2G\mathbf{J}}{r^3}$ for Lense-Thirring metric,

$$\Omega = \frac{2G\mathbf{J}}{r^3} \left[1 - \frac{3GM}{r} + \frac{21G^2M^2}{4r^2} + \mathcal{O}\left(\frac{a^2}{r^2}\right) \right]$$
 for approximate Kerr metric,

 $\mathbf{l} = \mathbf{r} \times \mathbf{p}$ is operator of angular momentum.

The Hamiltonian is not changed by the conformal-like transformation

Inclusion of electromagnetic interactions

Electromagnetic interactions can be added as follows:

$$\left[g^{\mu\nu}(\nabla_{\mu}+ieA_{\mu})(\nabla_{\nu}+ieA_{\nu})+m^{2}-\lambda R\right]\psi=0.$$

Simple derivation leads to

$$\left[\frac{1}{\sqrt{-g}}(\partial_{\mu}+ieA_{\mu})\sqrt{-g}g^{\mu\nu}(\partial_{\nu}+ieA_{\nu})+m^{2}-\lambda R\right]\psi=0.$$

Equivalent (relative to conformal-like transformations) form of this equation is given by

$$\begin{bmatrix} \left(D_{0} + \Upsilon'\right)^{2} + D_{i} \frac{G^{ij}}{g^{00}} D_{j} + \Lambda + \frac{m^{2}}{g^{00}} \end{bmatrix} \Phi = 0,$$

$$\Lambda \text{ is the same}$$

$$\Upsilon' = \frac{1}{2} \left\{ D_{i}, \frac{g^{0i}}{g^{00}} \right\}, \qquad D_{\mu} = \partial_{\mu} + ieA_{\mu}.$$
32

Generalized Feshbach-Villars transformation for both massive and massless particles

$$\left[\left(\partial_{0}+\Upsilon'\right)^{2}+T'\right]\Phi=0, \quad T'=D_{i}\frac{G^{ij}}{g^{00}}D_{j}+\Lambda+\frac{m^{2}}{g^{00}}, \quad \Phi=\phi+\chi, \quad i\left(D_{0}+\Upsilon'\right)\Phi=N(\phi-\chi).$$

The nonunitary transformation results in the following generalized Feshbach-Villars Hamiltonian:

$$\mathcal{H}_{gFV} = \rho_3 \frac{N^2 + T'}{2N} + i\rho_2 \frac{-N^2 + T'}{2N} - i\Upsilon'.$$

This Hamiltonian is not changed by the conformal-like transformation $g'_{uv} = \Omega^2 g_{uv}$, $m' = \Omega^{-1} m$.

The considered equations do not change their conformal properties when electromagnetic interactions are included

Comparison of scalar and Dirac particles

Analysis of properties of conformal transformations for Dirac particles has been fulfilled in

PHYSICAL REVIEW D 88, 045004 (2013)

Scalar particle in general inertial and gravitational fields and conformal invariance revisited

Alexander J. Silenko

ch Institute for Nuclear Problems, Belarusian State University, Minsk 220030, E Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Received 29 May 2013; published 5 August 2013)

Conformal transformations for Dirac particles

gravity + electromagnetism

Covariant Dirac equation:

$$(i\hbar \gamma^a D_a - mc)\psi = 0, \quad D_a = e_a^{\mu} \partial_{\mu} + \frac{i}{\Delta} \sigma^{bc} \Gamma_{bca}.$$

General nonunitary transformation brings this equation to the Hermitian Hamiltonian form:

$$\Phi = \sqrt{\sqrt{-g} e_{\hat{0}}^0} \psi.$$

Yu.N. Obukhov, A.J. Silenko, and O.V. Teryaev, Phys. Rev. D **84**, 024025 (2011).

The Hamiltonian is not changed by the conformal–like transformation

$$g'_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad m' = \Omega^{-1} m.$$

Dirac and Foldy-Wouthuysen Hamiltonians are conformally invariant when *m*=0!

Wave function of the initial covariant Dirac equation possesses the following conformal property:

$$\psi' = \Omega^{3/2} \psi$$
 when $g'_{\mu\nu} = \Omega^2 g_{\mu\nu}$, $m' = \Omega^{-1} m$.

Squared Dirac equation:

$$\begin{split} & \left[\, \pi^i \pi_i - \frac{\hbar}{2} \sigma^{\alpha\beta} \Big(\frac{q}{c} F_{\alpha\beta} + m \Phi_{\alpha\beta} \Big) + \frac{\hbar^2}{4} R \right. \\ & + \frac{\hbar^2}{16} (2 \Gamma^i{}_{\alpha\beta} \Gamma_i{}^{\alpha\beta} + i \varepsilon^{\alpha\beta\mu\nu} \Gamma^i{}_{\alpha\beta} \Gamma_{i\mu\nu} \gamma_5) - m^2 c^2 \, \right] \psi = 0, \end{split}$$

For the squared Dirac equation, $\lambda = \frac{1}{4}!$

Summary

- The covariant Klein-Fock-Gordon equation is presented in a new (Hermitian) form and conformal symmetry for a massive pointlike scalar particle (Higgs boson) is found. Conformal transformations for a massless particle and conformal-like transformations for a massive one do not change the form of the obtained equation
- Generalized Feshbach-Villars transformation and Foldy-Wouthyusen are performed for both massive and massless scalar particles in arbitrary gravitational fields. Conformal symmetries of relativistic Hamiltonians are found in the general case.
- Exact Foldy-Wouthyusen transformations are fulfilled for an arbitrary static metric and for a frame rotating in the Kerr field approximated by a spatially isotropic metric
- It is proven that inclusion of electromagnetic interactions does not change conformal properties of the considered equations
- Conformal symmetries of equations for scalar and Dirac particles are very similar

Thank you for your attention